Reinforcement Learning for Poker
Gabriel Larson

Abstract

This paper presents a reinforcement learning approach to playing poker, using the
Keras-RL [1] library’s built-in agents and the clubs_gym Python package [2] for
simulating the poker environment. The project aims to explore the effectiveness
of various reinforcement learning algorithms for mastering the complex game of
poker. Through a series of experiments, we evaluate the performance of different
agents and propose potential improvements to further enhance their capabilities.

1 Introduction

Poker is a popular card game with numerous variations, each presenting
unique challenges and requiring different levels of skill and strategy. No
Limit Texas Hold’em, a popular variant of poker, is a game of imper-
fect information, where players must make decisions based on incomplete
knowledge of their opponents’ cards and actions. This inherent complexity
makes poker an intriguing problem for artificial intelligence (AI) research.
The game’s unique structure and the strategic depth required to excel at
it have led to significant interest in the development of Al agents capable
of mastering poker.

In this project, we focus on 9-player No Limit Hold’em, a complex
variation where each player receives two private hole cards and shares five
community cards with other players. The objective is to make the best
five-card hand using a combination of hole and community cards. Players
can bet any amount of chips at any time during their turn, with no upper
limit, making the game highly dynamic and requiring adaptive strategies.

Reinforcement learning (RL) is a branch of machine learning that
focuses on training agents to make decisions by interacting with an envi-
ronment and receiving feedback in the form of rewards or penalties. In
recent years, reinforcement learning has emerged as a promising approach



to tackle complex problems, including those involving imperfect infor-
mation, such as poker. By learning from trial and error, RL agents can
adapt their strategies over time, eventually converging on optimal or
near-optimal solutions.

The objective of this project is to explore the application of reinforce-
ment learning techniques to the game of 9-player No Limit Hold’em,
using the Keras-RL library and the clubs_gym Python package. Keras-
RL provides a range of pre-built RL agents that can be easily integrated
into various environments, while clubs_gym offers a flexible and extensi-
ble platform for simulating poker games. By combining these tools, we
aim to study the effectiveness of different RL algorithms in learning poker
strategies and adapting to diverse game situations.

The contributions of this paper include:

® An overview of related work in the field of AI and poker, discussing existing solutions
and their limitations.

® A concise description of our approach, detailing the reinforcement learning algo-
rithms and techniques employed.

e A thorough evaluation of our proposed solution through a series of experiments,
analyzing the performance of different agents and their ability to learn effective
poker strategies.

® Suggestions for future work to further study the performance of reinforcement
learning agents in poker.

This paper is organized as follows: In Section 2, we provide a brief review
of related work in the field of Al and poker, discussing existing solutions
and their limitations. Section 3 describes our approach to the problem,
including details of the reinforcement learning algorithms and techniques
used. In Section 4, we present our experimental design and the results
obtained from our agents. Section 5 provides an analysis of the results,
followed by a conclusion and suggestions for future work in Section 6.
Finally, we provide a bibliography for further reference.

2 Literature review

2.1 AI and Poker

AT research in poker has been an active area of study, given the game’s
complexity and its nature as an imperfect information game. One of the
most significant milestones in this domain is the development of Libratus
by Brown and Sandholm [3], which defeated top human professionals in
heads-up no-limit Texas Hold’em poker. Libratus employed a combination



of abstraction techniques, endgame solving, and nested subgame solving
to achieve its remarkable performance.

Another notable work is DeepStack by Moravéik et al. [4], which
introduced an algorithm that combines recursive reasoning with deep
learning to approximate the Nash equilibrium strategy in heads-up no-
limit Texas Hold’em. DeepStack demonstrated a significant improvement
in playing strength compared to previous poker-playing Al agents, and
its techniques have inspired further research in the field. One of the key
innovations of DeepStack was the use of deep counterfactual value net-
works to estimate the value of poker hands, enabling efficient real-time
decision making.

Recent work by Brown et al. [5] introduced Pluribus, an AI agent that
extended the capabilities of Libratus to play at a competitive level against
human professionals in 6-player no-limit Texas Hold’em. Pluribus used
several novel techniques, including efficient search algorithms and self-
play training, to achieve its strong performance in a multiplayer setting.
This achievement demonstrates the scalability of Al techniques to larger,
more complex poker games and highlights the potential of Al in solving
real-world problems with multiple competing agents.

2.2 Reinforcement Learning Techniques

Reinforcement learning has been successfully applied to a variety of
games, including board games like Go and chess. One of the most well
known examples is AlphaGo by Silver et al. [6], which employed a combi-
nation of deep neural networks, Monte Carlo Tree Search (MCTS), and
reinforcement learning to defeat the world champion in the game of Go.
The success of AlphaGo has led to the development of more advanced Al
systems, such as AlphaZero [7], which can learn to play multiple games
(Go, chess, and shogi) using a single neural network architecture and a
self-play reinforcement learning algorithm.

In the context of poker, Heinrich and Silver [8] introduced Neural Ficti-
tious Self-Play (NFSP), a reinforcement learning algorithm that combines
neural networks with fictitious play to learn approximate Nash equilib-
rium strategies in large-scale poker games. NFSP has been shown to
be effective in training agents to play competitive poker, particularly in
heads-up limit Texas Hold’em. NFSP leverages the strengths of both deep
learning and fictitious play to create a scalable algorithm that can handle
the large state and action spaces present in poker.



Other reinforcement learning techniques that have been applied to
poker include Counterfactual Regret Minimization (CFR) [9] and Monte
Carlo Counterfactual Regret Minimization (MCCFR) [10]. These algo-
rithms have been used to compute near-optimal strategies in various poker
variants, demonstrating the potential of reinforcement learning for tack-
ling complex imperfect information games. MCCFR, in particular, has
been a key component of several successful poker-playing Al agents, such
as Libratus and Pluribus, due to its ability to efficiently approximate
optimal strategies through sampling.

The Keras-RL library, which we employ in our project, provides imple-
mentations of several reinforcement learning algorithms that can be
adapted to poker:

® Deep Q-Network (DQN): DQN [11] is an algorithm that combines Q-learning with
deep neural networks to handle high-dimensional state and action spaces. DQN has
been successfully applied to numerous Atari games and other environments with
discrete action spaces. DQN has been successful in various domains, particularly
in environments with discrete action spaces. However, poker involves continuous
and large action spaces, which might make it challenging for DQN to excel in this
particular setting.

® Deep Deterministic Policy Gradient (DDPG): DDPG [12] is an actor-critic algorithm
for continuous control tasks, which utilizes deep neural networks to approximate
both the policy and the value function. DDPG is particularly suited for environments
with continuous action spaces and has been successfully applied to various robotic
control tasks. . Although poker is not a typical continuous control task, DDPG may
still perform well due to its ability to handle continuous and large action spaces.

e Cross-Entropy Method (CEM): CEM [13] is a model-free, policy search method
that iteratively refines a probability distribution over the solution space to find an
optimal policy. CEM has been applied to several optimization problems, including
reinforcement learning tasks with discrete and continuous action spaces. Since poker
has a large but still discrete action space, this could be advantageous.

e State-Action-Reward-State-Action (SARSA): SARSA [14] is an on-policy, temporal-
difference learning algorithm that updates the Q-function after each step in the
environment. Its on-policy nature might limit its effectiveness in the complex and
dynamic environment of poker, where off-policy learning could potentially be more
beneficial.

The OpenAl Gym [15] is a toolkit for developing and comparing rein-
forcement learning algorithms. It provides a wide range of environments,
including classic control tasks, board games, and Atari games, that can
be easily integrated with reinforcement learning libraries like Keras-RL.
The Clubs package, which we use for simulating poker games, includes a



built-in implementation of the OpenAl Gym interface, allowing for easy
integration with Keras-RL agents.

3 Methodology

In this project, we aim to investigate the performance of different rein-
forcement learning algorithms in the context of 9-player no-limit Texas
Hold’em poker. Our approach consists of the following steps:

3.1 Implementing Reinforcement Learning Agents

We utilize the Keras-RL library to implement four reinforcement learn-
ing algorithms: Deep Deterministic Policy Gradient (DDPG), Deep
Q-Network (DQN), Cross-Entropy Method (CEM), and State-Action-
Reward-State-Action (SARSA). Each algorithm is adapted to work with
the Clubs_Gym no-limit Hold’em 9-player environment, which provides a
realistic and challenging poker simulation.

3.2 Creating Individual Agents

For each of the four reinforcement learning algorithms, we create 9 indi-
vidual agents, resulting in a total of 36 agents. This setup ensures that
in any given poker hand, any combination of agent types playing in the
hand is possible. Each type of agent will get experience playing against
every combination of opponent over the course of training.

3.3 Training and Evaluation Setup

To train and evaluate the agents, we employ a random selection process
in which agents are randomly chosen to play against each other in each
hand (episode). This approach forces the agents to adapt to a constantly
changing environment and prevents them from learning less meaningful
strategies based on the specific opponents they face.

We run a total of 10 million episodes, with each individual agent par-
ticipating in approximately 278,000 hands on average. Throughout this
process, we keep track of the cumulative rewards for each agent.

3.4 Performance Analysis

After completing the training and evaluation process, we analyze the
performance of the agents by plotting the cumulative rewards for each
agent, as well as the cumulative rewards by agent type. This allows us to
assess the overall effectiveness of each reinforcement learning algorithm



and determine if one algorithm consistently outperforms the others in the
context of 9-player no-limit Texas Hold’em poker.

By following this methodology, we aim to gain insights into the relative
strengths and weaknesses of different reinforcement learning algorithms
when applied to a complex, imperfect information game like poker.

4 Results

1e6 Cumulative rewards, per Agent Type

— DDPG

— DN
SARSA

— CEM

reward

Cumulative

Fig. 1 Cumulative rewards by agent type (SARSA orange, DQN red, CEM green, DDPG blue)

Figures 1, 2, and 3 illustrate how the different reinforcement learn-
ing algorithms performed throughout the simulation by plotting their
cumulative rewards at each episode. SARSA emerged as the best overall
agent type. The top-performing SARSA agent was an outlier, significantly
outperforming other all other agents and amassing a substantial total
reward.

CEM agents exhibited the least diversity in terms of performance.
Their end results were relatively clustered, with none of the agents
achieving the highest or lowest rewards.

DDPG agents fared the worst out of the four agent types. Not only
did the worst-performing agent belong to this group, but the cumulative
reward for DDPG agents was also the lowest.



Cumulative reward

-1

1e6 Cumulative rewards, All Players

Fig.

Episode

2 Cumulative rewards, all agents (SARSA orange, DQN red, CEM green, DDPG blue)

DQN agents displayed a wide range of performance levels, with some

agents performing well and others poorly. On average, DQN was the
second-best agent type, although it ultimately lost to SARSA.

1e6 Cumulative rewards, All Players

Cumulative reward

Fig.
blue)

Episode

3 Cumulative rewards at the end of simulation (SARSA orange, DQN red, CEM green, DDPG



5 Analysis

The superior performance of SARSA agents can be attributed to their on-
policy, temporal-difference learning approach, which might have enabled
them to adapt more effectively to the dynamic poker environment. The
fact that the top-performing SARSA agent was an outlier suggests that
specific configurations or training conditions may have contributed to its
exceptional performance. It would be interesting to investigate the specific
aspects of SARSA’s learning process, such as its exploration-exploitation
trade-off, that led to its success in this particular setting. Understanding
the factors that contributed to the outlier’s performance may provide
insights into how to improve other SARSA agents and make them more
competitive in the poker environment.

The relatively consistent performance of CEM agents could indi-
cate that the policy search method employed by this algorithm is less
sensitive to the initial conditions and hyperparameters, resulting in a
more stable, albeit not outstanding, performance. This observation raises
the question of whether the CEM algorithm’s inherent stability can be
leveraged to improve its performance through additional tuning or opti-
mization. For instance, incorporating adaptive mechanisms or fine-tuning
the exploration process might lead to better results while maintaining the
algorithm’s consistency.

The poor performance of DDPG agents is somewhat surprising, given
their ability to handle continuous and large action spaces. It is possible
that the specific implementation details, neural network architectures,
or hyperparameters used in our study may have hindered the algo-
rithm’s effectiveness in the poker domain. A more detailed examination
of the DDPG agents’ learning processes could shed light on the chal-
lenges they faced and offer insights into potential adjustments that might
enhance their performance. Moreover, exploring alternative actor-critic
approaches, such as Proximal Policy Optimization (PPO), could provide
an interesting avenue for future research in this area.

The diverse performance of DQN agents highlights the algorithm’s
adaptability in various settings. However, the overall second-best perfor-
mance of DQN agents suggests that this algorithm may face challenges
in dealing with the imperfect information nature of poker, which could
impact its ability to learn optimal strategies effectively. Exploring mod-
ifications to the DQN algorithm that specifically address the imperfect
information aspect of poker, such as incorporating opponent modeling or



exploiting hidden information, might lead to improved performance and
better competitive results.

In conclusion, our study demonstrates that SARSA is the most effec-
tive reinforcement learning algorithm for 9-player no-limit Texas Hold’em
poker among the tested algorithms. However, further research is needed to
investigate the factors contributing to the performance of different algo-
rithms and explore potential improvements and optimizations to enhance
their effectiveness in the complex and dynamic poker environment. By
delving deeper into the nuances of each algorithm and their learning
processes, we can develop a better understanding of the challenges and
opportunities in applying reinforcement learning to imperfect information
games like poker.

6 Conclusion

In this study, we investigated the performance of four reinforcement
learning algorithms, namely SARSA, DQN, CEM, and DDPG, in the
context of 9-player no-limit Texas Hold’em poker. Our results indicate
that SARSA was the most effective algorithm among the tested methods,
while DQN ranked second, followed by CEM and DDPG. This outcome
highlights the potential of reinforcement learning techniques, particularly
SARSA, in tackling complex imperfect information games like poker.

Despite the promising results, our study also revealed certain lim-
itations and challenges faced by the tested algorithms. These findings
emphasize the need for further research and optimizations to improve the
performance of reinforcement learning agents in poker and other imper-
fect information domains. Moreover, our study opens up several avenues
for future work:

Investigating the specific factors contributing to the top-performing
SARSA agent’s success and exploring methods to replicate this perfor-
mance in other SARSA agents. Examining the stability of CEM agents
and exploring potential improvements through adaptive mechanisms or
fine-tuning the exploration process. Analyzing the reasons behind the
poor performance of DDPG agents in the poker domain and evaluating
alternative actor-critic approaches, such as Proximal Policy Optimization
(PPO). Exploring modifications to the DQN algorithm that address the
imperfect information nature of poker, such as incorporating opponent
modeling or exploiting hidden information. By pursuing these research
directions, we can gain a deeper understanding of the challenges and



opportunities in applying reinforcement learning to imperfect informa-
tion games and contribute to the ongoing development of more effective
and adaptable Al agents in poker and beyond.

References

1]

2]

[11]

Keras-rl: Deep Reinforcement Learning for Keras. GitHub. https://github.com/
keras-rl/keras-rl (2019)

clubs_gym: Open Al gym poker environment built using the clubs package.
GitHub. https://github.com/fschlatt/clubs_gym (2022)

Brown, N., Sandholm, T.: Libratus: The superhuman ai for no-limit poker. In:
International Joint Conference on Artificial Intelligence (2017)

Moravé ik, M., Schmid, M., Burch, N.; Lisy, V., Morrill, D., Bard, N., Davis,
T., Waugh, K., Johanson, M., Bowling, M.: DeepStack: Expert-level artificial
intelligence in heads-up no-limit poker. Science 356(6337), 508-513 (2017) https:
//doi.org/10.1126 /science.aam6960

Brown, N.,; Sandholm, T.: Superhuman ai for multiplayer poker. Science 365,
885-890 (2019)

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529, 484-489 (2016) https://doi.org/10.
1038 /naturel6961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Has-
sabis, D.: Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm (2017)

Heinrich, J., Silver, D.: Deep Reinforcement Learning from Self-Play in Imperfect-
Information Games (2016)

Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization
in games with incomplete information. In: Advances in Neural Information
Processing Systems, pp. 1729-1736 (2007)

Lanctot, M., Waugh, K., Zinkevich, M., Bowling, M.: Monte carlo sampling
for regret minimization in extensive games. In: Advances in Neural Information
Processing Systems, pp. 1078-1086 (2009)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra,

10


https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/fschlatt/clubs_gym
https://doi.org/10.1126/science.aam6960
https://doi.org/10.1126/science.aam6960
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961

D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013) 1312.5602

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning (2015)

Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning.
Springer, 777 (2004)

Rummery, G.A., Niranjan, M.: On-line g-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering
Department (1994)

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAl Gym (2016)

11


https://arxiv.org/abs/1312.5602

	Introduction
	Literature review
	AI and Poker
	Reinforcement Learning Techniques

	Methodology
	Implementing Reinforcement Learning Agents
	Creating Individual Agents
	Training and Evaluation Setup
	Performance Analysis

	Results
	Analysis
	Conclusion

